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Abstract— Personalized marketing is a key business strategy 

that uses customer data to offer an optimized marketing 

experience. Leveraging the extensive customer data, businesses 

can identify behavioral patterns to more effectively design 

targeted marketing tactics. Buy-till-you-defect [BTYD] models 

are one of the key enablers in this endeavor as they specify 

customers’ transaction and defection processes for businesses 

operating under a non-contractual setting. These models have 

been typically used to identify active customers in a company’s 

customer-base as well as to predict purchase frequency and 

amount. Given the rise of personalized marketing, companies 

continuously need to improve their understanding of customers 

to stay ahead of competition. In this article, we enhanced BTYD 

models’ predictive capability so that these models can jointly 

predict also the customer’s decision of when to shop, together 

with how often to shop and how much to spend. Purchase timing 

predictions are managerially relevant as they enable marketing 

executives to choose appropriate targeting and promotion 

strategies to improve revenues. For two well established BTYD 

models, Pareto/NBD model and its Hierarchical Bayes 

extension, we derive closed-form expressions for future 

purchase timing. Next, we validate these timing predictions on 

real datasets. We believe extending the use of BTYD models 

with this additional model output will lead to higher business 

adoption.  

Keywords—Buy–till–you–defect models; purchase timing; 

Bayesian estimation; customer base analysis; personalization 

I. INTRODUCTION 

Many firms routinely store extensive customer transaction 
data. However, processing this data in order to design 
personalized customer journeys can still be a challenge. The 
customer base analysis literature provides a number of 
methods to leverage such rich data to predict customer’s 
transaction behavior. In literature, a distinction is made 
between a contractual and a non-contractual setting. The latter 
is especially challenging as one does not observe the moment 
at which an individual stops being a customer of the company. 
In this setting, it is interesting to predict the number of future 
purchases and to infer from observed behavior whether a 
customer has already quit buying from the company. A wide 
variety of models is available for these purposes.  

 

 

The ever-growing online retail industry is an important 
example of the non-contractual setting. Retailers never know 
which customers are still active, or in other words, will 
continue buying from the company. Thus, the customer 
database of an online retailer is likely to contain many inactive 
customers. For example, in 2005 eBAY reported 168 million 
registered customers but only 68 million of them were counted 
as active by the company [1]. It is, therefore, very useful to 
develop a method to identify active customers under a non-
contractual setting.  

It has been widely recognized in the literature that models 
that ignore defection, like the early NBD model by A.S.C. 
Ehrenberg [2], do not provide good predictions for this type 
of industry. They generally overestimate future transaction 
frequencies as demonstrated in [3]. The first model that does 
account for defection was proposed by D.C. Schmittlein and 
R.A. Peterson [4]. Since then, there has been a strong focus on 
the so-called buy-till-you-defect (BTYD) model. Several 
extensions of this model have been introduced, see [5], [6] and 
[7]. Some of these models have also been used to generate 
managerially relevant insights as in [8], [9] and [10]. 

In this paper, we discuss that another key metric on 
customer behavior can also be jointly predicted by these 
models. This metric is the highly relevant future purchase 
timing. These timing predictions critically depend on the 
interplay between the assumed transaction and defection 
processes. Yet, predicting the timing of the next purchase is 
not straightforward. We develop methods for the state-of-the-
art BTYD models to enable them to also deliver such timing 
predictions.  

We present out-of-sample performances in predicting the 
transaction timing of each customer for three datasets. The 
first dataset is from an online grocer in a Western European 
country. The second is the well-known CDNOW dataset 
which has been commonly used as a benchmark set. The third 
dataset is also used by K. Jerath, P.S. Fader and B.G.S. Hardie 
[7] and by E.P. Batislam, M. Denizel, and A. Filiztekin [11], 
and is from a Turkish grocery retailer.  

Our results show that BTYD models can predict purchase 
timing to a great extent. We also discuss that certain data 
characteristics a-priori indicate how well the model predict.  
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The remainder of this paper is structured as follows. 
Section II gives an overview of the existing literature on 
BTYD models. We discuss the main features and the 
differences across the models, and present our contribution in 
more detail. In Section III, we provide technical details of the 
considered models and present new results that deal with the 
timing of future transactions. Section IV gives a detailed 
description of the datasets. After presenting results of the 
empirical study in Section V, general conclusions are 
discussed in Section VI. 

II.   BUY-TILL-YOU-DEFECT MODELS 

In this section, we briefly introduce the main ideas 
underlying the BTYD models. After discussing the 
similarities and differences across the models in scope, we 
articulate our key contribution. 

A. BTYD Modeling Literature 

The Pareto/Negative Binomial Distribution (Pareto/NBD) 
model is the first model that considers the customer’s 
defection process [4]. This model assumes that, while active, 
customers make purchases according to a Poisson process 
with heterogeneous rates. Customer defection is modeled 
using an exponential distribution, also with a heterogeneous 
rate. The individual-specific rates of both processes are next 
treated as random effects and modeled using independent 
gamma distributions. This model so far has enabled 
individual-level calculations on the probability of being active 
and the number of future purchases. The structure of the 
model leads to closed-form expressions for such predictions 
given the (hyper)parameters of the heterogeneity 
distributions. This feature has made this model useful for 
today’s personalized marketing concepts such as direct 
marketing, one-to-one marketing and customer relation 
management.  

Three important extensions of the Pareto/NBD model 
have been introduced in literature. As suggested by P.S. Fader, 
B.G.S. Hardie, and K.L. Lee [5], the continuous time 
defection process is replaced by a discrete time process. More 
specifically, after each purchase the customer defects with an 
individual-specific probability. The resulting model is called 
Beta-Geometric/Negative Binomial Distribution (BG/NBD) 
model. The disadvantage of this model is that frequent 
purchasers have more “opportunities” to defect. In some cases 
this may not correspond to reality. To solve this problem, the 
Periodic-Death-Opportunity (PDO) model was introduced by 
K. Jerath, P.S. Fader, and B.G.S. Hardie [7]. This model is 
very similar to the BG/NBD, but defection opportunities are 
defined in calendar time. In other words, defection can only 
occur at certain time intervals, independent of the transaction 
timing. 

Another extension of the Pareto/NBD model deals with 
the relation between the purchase rate and the defection rate. 
In Pareto/NBD model, and also in the above-mentioned 
extensions, these rates are assumed to be independent. In 
practice, this assumption may be too restrictive hence violated 
as frequent shoppers tend to have a long lifetime. This would 
imply a negative correlation between both rates. A 

Hierarchical Bayes extension of the Pareto/NBD model that 
incorporates such correlation is suggested in by M. Abe [6]. 
In this model, gamma heterogeneity distributions are replaced 
by a bivariate log-normal distribution. Next to the possibility 
to capture correlations, another advantage of this model is that 
individual-specific covariates can be leveraged to gain further 
insights on customer behavior. A disadvantage of this 
extension is that for some quantities, closed-form expressions 
are no longer available. As a result, the proposed model in [6] 
needs Bayesian (simulation) techniques. We will refer to this 
model as the HB model. 

In this paper, we focus on the high-performing 
Pareto/NBD model and its Hierarchical Bayes (HB) 
extension. 

B. Our contribution 

We show that another key behavioral dimension can also 
be jointly predicted using the same models. We derive specific 
formulas and present a general method to predict the timing 
of the next purchase for the two established BTYD models. 
Given the memoryless property on inter-arrival times of 
transactions in the considered BTYD models, we can predict 
the timing of the first and the last transaction in a certain 
period. As an in-sample metric, we propose the timing of the 
last in-sample transaction; as a holdout metric, we propose the 
minimum of the timing of the first out-of-sample transaction 
and the end of the holdout period. 

We also validate the newly introduced individual level 
timing predictions on different datasets and discuss their 
managerial implications. 

III.    INTRODUCING THE TIMING OF TRANSACTIONS 

In this section, we present the models in technical terms. 
Both models in scope provide a representation of individual 
behavior by considering two arrival processes: one on 
purchase and one on defection. Individuals are assumed to 
make transactions according to the purchase process until they 
defect. The defection and transaction processes for individual 
i depend on individual-specific parameters which we denote 
by θi . On the population-level, all models specify a 
heterogeneity distribution for (the elements of) θi. This 
distribution is parameterized by hyper-parameters which are 
denoted by ξ.  

Table I gives a summary of the assumptions and the 
dominant estimation method for both models. We distinguish 
between assumptions on individual behavior and on 
heterogeneity modeling. Both models in scope have the same 
assumption on the purchase process of an individual, while 
active as well as on defection process; they differ in the way 
how they model heterogeneity. 
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TABLE I.  MODEL COMPARISON WITH RESPECT TO THE ASSUMPTIONS AND 

ESTIMATION PROCESS 

 Pareto/NBD Hierarchical Bayes 

Purchase Process 
Defection Process 

Defection Timing 

Poisson 
Exponential 

Continuous 

Poisson 
Exponential 

Continuous 

Purchase rate distribution 

Defection rate distribution 

Gamma 

Gamma 
Bi-variate log-normal 

Estimated parameters 

Estimation procedure 

Hyper params. 

MLE 

Hyper & indiv. params 

MCMC 

 
In the remainder of this section, we first present closed-

form expressions for the last transaction timing in the 
calibration period and the first transaction timing in the 
holdout period and then discuss the sampling of (the 
hyperparameters and) the behavioral parameters for both 
models. Note that, we are the first to derive these expressions.  

A. Pareto/NBD Model 

In the Pareto/NBD model, customer i remains active for a 

stochastic lifetime (t∆,i) which has an exponential distribution 

with rate µi. While active, this customer makes purchases 

according to a Poisson process with rate λi. The purchase rate 

and the defection rate are assumed to be distributed according 

to two independent gamma distributions across the 

population. The distribution for λi has shape parameters r, and 

scale parameter α. The shape and scale parameters for µi are 

s and β, respectively.  

The parameters of the heterogeneity distributions can be 

estimated by MLE. The likelihood can be written in terms of 

the number of purchases (xi) and the timing of the last 

purchase (tx,i) for each customer. This estimation procedure 

can be quite tedious from a computational perspective as the 

likelihood function involves numerous evaluations of the 

Gaussian hypergeometric function.  

Some key expressions such as the probability of being 

active at the end of the calibration period (Ti) and the 

expected number of future transactions in a given time period 

for both a randomly chosen customer and a customer with 

past observed data (xi, tx,i, Ti) are presented in [4].  

We demonstrate that the Pareto/NBD model can be 

leveraged to predict also the timing of the last transaction in 

the calibration period and the timing of the first transaction in 

the holdout period. Given the individual-level parameters λi 

and µi, we can obtain the expected timing of the last purchase 

as 

 

E(𝑡x,i|λ𝑖 , µ𝑖 , T𝑖) =
1−𝑒−µ𝑖T𝑖

µ𝑖
−

1−𝑒−(λ𝑖+µ𝑖)T𝑖

λ𝑖+µ𝑖
            (1) 

 

see Appendix A for the associated derivations. Note that we 

are the first to make these derivations on purchase timing. By 

comparing E[tx,i | λi ,µi ,Ti], averaged over the estimated 

distribution of λi and µi, to the observed timing of the final 

purchase, we can assess the model’s fit performance.  

To measure the model’s performance on out-of-sample 

predictions, we can use the timing of the first purchase in the 

interval [Ti , 𝑇𝑖
+ ], where 𝑇𝑖

+marks the end of the out-of-

sample period. A complication here is that a particular 

customer may not make any purchase in this interval. For 

example, this may happen if the customer has already 

defected. This makes it extremely difficult to compare the 

predictions to realizations. We solve this by instead 

predicting the minimum of the next purchase timing and 𝑇𝑖
+; 

for individual i this minimum is denoted by tf,i. If the 

customer has defected, tf,i = 𝑇𝑖
+.  

In Appendix A, we show that the conditional expectation 

of tf,i in the Pareto/NBD model equals 

 

E(𝑡f,i|𝑥𝑖  , 𝑡𝑥,𝑖  , 𝑇𝑖  , 𝜆𝑖  , µ𝑖) = (1 − 𝑃[𝑡∆,i >

𝑇𝑖|𝑥𝑖  , 𝑡𝑥,𝑖  , 𝑇𝑖  , 𝜆𝑖  , µ𝑖])𝑇
+   + 𝑃[𝑡∆,i >

𝑇𝑖|𝑥𝑖  , 𝑡𝑥,𝑖  , 𝑇𝑖  , 𝜆𝑖  , µ𝑖] (𝑇𝑖 +
1−𝑒−(𝜆𝑖+µ𝑖)(𝑇𝑖

+−𝑇𝑖 )

𝜆𝑖+µ𝑖
)                     (2) 

 

where 𝑃[𝑡∆,i > 𝑇𝑖|𝑥𝑖  , 𝑡𝑥,𝑖  , 𝑇𝑖  , 𝜆𝑖  , µ𝑖]  gives the probability 

that individual i is still active at time Ti. This probability can 

be shown to equal 
𝜆𝑖

𝜆𝑖 + µ𝑖𝑒
(𝜆𝑖+µ𝑖)(𝑇𝑖−𝑡x,i )

 

 (3) 

 

Note that this probability depends on the time between the 

last (in-sample) purchase and Ti. There is still a chance of 

defection in this period, but, given the data, a purchase is 

impossible in that interval. 

 

Sampling of the behavioral parameters for the 

Pareto/NBD Model 

The joint posterior distribution of the behavioral 

parameters, θi = (λi ,µi), of the Pareto/NBD model is 

characterized by the likelihood function, the independent 

gamma priors on these parameters, and the (ML estimates of 

the) hyperparameters, ξ=(α, r,β,s): 

 

𝜋(𝜃𝑖|𝑑𝑎𝑡𝑎𝑖 , 𝜉) = 𝜋(𝜆𝑖  , µ𝑖| 𝑟, 𝛼, 𝑠, 𝛽, 𝛤, 𝑥𝑖  , 𝑡𝑥,𝑖 , 𝑇𝑖)

∝ 𝑓(𝑥𝑖  , 𝑡𝑥,𝑖  |𝜆𝑖  , µ𝑖)𝑔(𝜆𝑖  |𝑟, 𝛼)ℎ(µ𝑖  |𝑠, 𝛽)

∝
𝜆𝑖
𝑥𝑖

λ𝑖 + µ𝑖
(µ𝑖𝑒

−(λ𝑖+µ𝑖)𝑡𝑥,𝑖

+ λ𝑖𝑒
−(λ𝑖+µ𝑖)T𝑖)

𝛼𝑟

Γ(𝑟)
𝜆𝑖
(𝑟−1)𝑒−𝛼𝜆𝑖

𝛽𝑠

Γ(𝑠)
𝜇𝑖
(𝑠−1)

𝑒−𝛽µ𝑖 

(4) 

 

Among the models that rely on MLE, the Pareto/NBD 

model is the only one that does not have a standard 

distribution of individual parameters, π(θi |datai, ξ) where, 

again, θi denotes the individual-level parameters for 

individual i and ξ denotes the hyperparameters associated 

with the whole customer base in the BTYD model. A 

Metropolis-Hastings algorithm can be used to sample from 

this posterior density. Details of this sampling algorithm are 

presented in Appendix B. 
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B. Hierarchical Bayes Extension of the Pareto/NBD Model 

The Pareto/NBD model presented above does not allow 

the individual-level parameters to be correlated and it does 

not take into account customer characteristics. In many cases, 

individual-level characteristics are available and may be 

useful in predicting customer behavior. Therefore, a 

Hierarchical Bayes [HB] extension of the Pareto/NBD model 

is proposed in by M. Abe in [6] where the individual-level 

parameters follow a bivariate log-normal distribution. The 

mean of this distribution may depend on customer 

characteristics.  

The disadvantage of this extension is that closed-form 

expressions for interesting metrics, such as the expected 

number of purchases, are no longer available. Besides, MLE 

can no longer be straight-forwardly used to obtain parameter 

estimates. The use of Markov chain Monte Carlo [MCMC] 

techniques to estimate the (hyper)parameters and to calculate 

various metrics are proposed in [6].  

Same individual-level assumptions are made in [6] as in 

the Pareto/NBD model, but assumes that (logλi ,logµi) ∼ 

N(wiβ,Γ), where wi is a 1× K vector of individual 

characteristics, including an intercept. In case no covariates 

are available, the distribution reduces to N(β,Γ). Γ is not 

restricted to a diagonal matrix and, therefore, this model 

allows the individual-level parameters to be correlated.  

The joint density of the data and all parameters forms the 

basis for the inference. This density is given by  

 

𝜋({𝑥𝑖  , 𝑡𝑥,𝑖  , 𝑇𝑖  , 𝜆𝑖  , µ𝑖}, 𝛽, 𝛤) 

= ∏ (𝜋(𝑥𝑖  , 𝑡𝑥,𝑖  |𝜆𝑖  , µ𝑖)𝜋(𝜆𝑖  , µ𝑖| 𝛽, 𝛤))
𝑁
𝑖=1  𝜋(𝛽, 𝛤).             (4) 

 

Here π(β,Γ) is the prior distribution of the population-level 

parameters β and Γ. The standard conjugate prior is used, that 

is, β ∼ N(β0,A0) and Γ follows an inverted Wishart 

distribution with parameters (ν0, Γ0). As the individual-level 

behavioral assumptions of the HB model are identical to the 

Pareto/NBD model, conditional on λi and µi, all timing related 

expressions are the same. Draws for the individual-level 

parameters are a natural by-product of the MCMC sampler.  

An extension of the HB model is proposed in [12] by 

adding a customer behavioral characteristic which is the 

amount of spending. Hereby, the individual parameter vector, 

θi, extends to three dimensions, including the rate of average 

log-spending of customers, (logλi ,logµi ,logηi). We also 

include this extension in our study. Consequently, we 

consider four different configurations of the HB model. The 

first configuration (HB1) represents the HB model without 

any covariates. The second configuration (HB2) incorporates 

only the customer-specific covariates. The third and fourth 

configurations represent the HB models with the average 

spending parameter, and without or with covariates, 

respectively.  

 

Sampling of the hyperparameters and the behavioral 

parameters for the HB Model  

We use MCMC for inference on the hyperparameters and 

the individual parameters for the HB models. More 

specifically, we use a Metropolis within Gibbs sampler, see 

[13]. The sampler uses the latent variables zi and tδ,i , where zi 

is the binary variable representing whether customer i is 

active (zi = 1) or inactive (zi = 0) at the end of the calibration 

period; and if already inactive, tδ,i is the defection time, see 

[6]. As our sampler differs from the one presented in [6], we 

present the main steps of the sampler below:  

 

[0] Set initial value for θi ,i = 1,...,N.  

[1a] Generate zi | tx,i ,xi ,Ti, θi according to the being 

active probability given in Equation (3), for i = 

1,...,N.  

[1b] If zi = 0, generate tδ,i | tx,i ,xi ,Ti, zi , θi using an 

exponential distribution truncated to (tx,i ,Ti).  

[2] Generate β,Γ| θi for i=1,…N using a standard 

multi-variate normal regression update (see [14] 

page 34).  

[3] Generate θi |tx,i ,xi ,Ti , zi ,t∆,i ,β,Γ with a Gaussian 

random-walk MH algorithm, for i = 1,...,N.  

 

The step size in the random-walk MH algorithm is set by 

applying an adaptive MH method in the burn-in phase, see 

further details in [15]. 

IV. DATA 

We leverage three real datasets to predict and validate the 

purchase timing. The first dataset contains daily transaction 

data of an online grocery retailer in a Western European 

country. We base our analysis on a random set of 1460 

customers who started buying from the company in January 

2009. We ignore all Sundays as the company does not 

provide delivery on that day. The available data contains the 

initial and the repeat purchase information of each customer 

over a period of 309 days. To estimate the model parameters, 

we use the transaction data of all customers over the first 154 

days, leaving a 155-day holdout period for model validation.  

The second dataset is the commonly used CDNOW data. 

This publicly available dataset covers the transaction data of 

2357 customers who made their first purchase in the first 

quarter of 1997. The data spans a period of 78 weeks from 

January 1997 through June 1998. We set the calibration and 

holdout periods to 39 weeks each.  

The final dataset comes from a Turkish grocery store. This 

dataset is also used in [7] and [11]. It contains the transactions 

of 5479 customers who made their first purchase between 

August 2011 and October 2011, covering a period of 91 

weeks. To be consistent with the earlier studies, we use the 

first 78 weeks for calibration and leave 13 weeks for 

validation purposes.  

Despite the similar format of transactional data across 

these three datasets, there are significant differences. First 

and foremost, the companies that supply the data operate in 

different industries, i.e. grocers vs entertainment. While two 

of them are online retailers, one is a brick-and-mortar retailer 
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with a strong loyalty program. We believe such differences 

are important to be considered while building managerial 

insights. 

V.  EMPIRICAL RESULTS 

In this section, we focus on individual-level predictions 

conditional on the individual’s history and present results in 

predicting the timing of the first out-of-sample purchase.  

Note that for the online retailer datasets (online grocer and 

CDNOW), covariate data on the average number of shopping 

items per customer is available. Hence this data is used in the 

HB model configurations HB2 and HB4. As both datasets 

also have individual-level spending information, the 

spending extension of the HB models (HB3 and HB4) can be 

applied as well. We mean-center the covariate (average 

number of items in the shopping basket) so that the mean of 

the behavioral parameters, θi, given average covariate values 

will be entirely determined by the intercept. As no covariate 

nor spending information is available for the third dataset 

(grocer), only the HB1 model can be applied. For all HB 

models, the MCMC steps were repeated 256,000 iterations, 

of which the last 32,000 were used to infer the posterior 

distribution of parameters. Convergence was monitored 

visually and checked with the Geweke test on all datasets, see 

how to evaluate the accuracy of sampling-based approaches 

to the calculation of posterior metrics in [17]. 

As discussed in Section III, for some metrics of interest, 

obtaining closed-form expression conditioned on an 

individual’s history and hyperparameters can be extremely 

cumbersome. We, therefore, first obtain draws for the 

individual’s behavioral parameters from the posterior 

densities and next calculate the expected value of metrics of 

interest by averaging over these draws. For the Pareto/NBD 

model, we use a Gaussian random-walk MH sampler to 

obtain draws of individual parameters conditional on the 

hyperparameters. To satisfy convergence, we repeat the 

iterations 300,000 times, of which only the last 10,000 

iterations were used. 

We focus on the performance on predicting future 

transaction timing.1 More precisely, with the timing of the 

first out-of-sample transaction, we mean the minimum of the 

timing of the next transaction and the end of the out-of-

sample period. We use MSE, MAE and the correlation 

between predicted and observed values.  

Table II presents an overview of the main results. The HB 

models perform rather well on the grocer and online grocer 

datasets. This can be explained by the fact that we found a 

significant correlation between the behavioral parameters for 

both datasets. As explained earlier, Pareto/NBD model 

assumes independence between purchase and defection rates, 

whereas HB models relax this assumption by allowing these 

 
1 We thank E.P. Batislam, M. Denizel, and A. Filiztekin [11] and 

P.S. Fader, B.G.S. Hardie, and K.L. Lee [16] for making the out-of-

sample timing data available. 

individual-level parameters to follow a bivariate log-normal 

distribution. 

Pareto/NBD model outperforms the HB models on 

CDNOW dataset in out-of-sample predictions. CDNOW data 

exhibits certain characteristics that are not valid for the two 

other datasets, such as relatively low number of repeat 

transactions as well as no dependency between behavioral 

parameters. 

TABLE II.  MODELS’ PREDICTION PERFORMANCE ON THE TIMING OF NEXT 

TRANSACTION 

Dataset Model Correlation MSE MAE 

 

 

Online 
Grocer 

Pareto/NBD 

HB1 

HB2 
HB3 

HB4 

0.7296 

0.7328 

0.7254 
0.7201 

0.7204 

46.674 

43.416 

44.374 
46.594 

46.504 

4.508 

4.223 

4.296 
4.067 

4.073 

 
 

CDNOW 

Pareto/NBD 
HB1 

HB2 

HB3 
HB4 

0.5789 

0.5486 

0.5449 

0.5687 
0.5689 

125.451 

273.555 

282.423 

270.514 
270.028 

7.372 

15.660 

15.865 

15.408 
15.376 

Grocer 

 

Pareto/NBD 

HB1 

0.8183 

0.8190 

7.684 

7.602 

1.442 

1.426 

 

Among the HB models, a remarkable point is the improved 

performance of the HB3/4 models that consider the average 

spending amount on CDNOW and online grocer datasets. We 

can explain this with the existence of the strong and 

significant negative correlation between the spending amount 

and defection parameters in both datasets.  

Note that we observe an interesting point solely on the 

online grocer data that MSE and MAE measures favor 

different versions of HB models. This can be explained by 

the fact that there are a limited number of outliers with the 

HB3/4 models. This results in having a higher MSE for HB3 

model as this metric is more sensitive to outliers, i.e. the error 

increases a quadratic fashion in MSE versus in a proportional 

fashion in MAE. 

VI. DISCUSSION 

In this paper, our goal is to enhance the Pareto/NBD 

model and its HB extension with additional predictive 

capabilities. We argue that prediction of the future transaction 

timing of an individual is a managerially relevant metric and 

show that leveraging the exact same model we can jointly 

predict the timing of next transactions together with future 

transaction frequency and amount. 

Timing predictions help to optimize several marketing 

strategies, such as setting price, promotion and advertising 

policies as discussed by K. Jedidi, C. F. Mela, and S. Gupta 

in [18]. For example, consider an online retailer 

implementing micro-marketing strategies. The most 

appropriate time to contact its customers depends on their 
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expected timing of the next purchase. High quality timing 

predictions may contribute to achieving the full potential of 

micro-marketing [19].  

Following the pioneering research by S. Gupta [20], there 

is a growing literature that examines the effectiveness of 

promotions on whether to buy, ’when’ to buy, and how much 

to buy; see a summary of relevant literature in [21]. We 

believe that using these models to predict the timing of 

transactions provides a new means of answering the ’when’ 

question.  

An operations manager may also use predictions on the 

timing and transaction value as input for Revenue 

Management. For example, with individual level timing 

predictions, an online retailer can optimize its delivery fleet 

capacity or even optimize its delivery schedules on a daily 

basis. Given the fact that online retailers have limited 

delivery capacity at a given time, operations managers can 

also prioritize key customer groups for highly demanded 

delivery time slots based on these predictions [22]. Overall, 

as emphasized by N. Tereyagoglu, P. Fader, and S. 

Veeraraghavan, having accurate timing predictions has a 

crucial role in improving revenues [23]. 

Besides the relevance of timing predictions from 

operations and marketing perspectives, let us now discuss 

why it is important for businesses to get more predictive 

output from a single model. Despite the advances in 

enterprise level machine learning model automation, 

businesses still trust one integrated model that can jointly 

predict multiple metrics such as purchase frequency, amount 

and timing, over multiple models that predict single metrics 

independently. Hence it is commonly observed that the more 

behavioral dimensions a model can predict, the more likely it 

is to be adopted by business. As discussed by P. Boatwright, 

S. Borle and J. B. Kadane, the interest in models that can 

predict key quantities in a joint, dependent manner also 

depends on which type of industry the business operates in 

[24]. The authors argue that especially online retailers need a 

joint model for different dimensions of customers’ purchase 

behavior, such as timing and frequency.  

In summary, we believe that the ability to predict the 

timing of future transactions can be instrumental in 

accelerating not only BTYD models’ adoption by business, 

but also research on predictive performance of these models 

across different industries such as apparel, home appliances 

and electronics retailing.  

Overall, we present a general method and derive specific 

formulas that can be used to predict the timing of the next 

purchases for two established BTYD models. We are the first 

to derive these formulas. We use these methods to compare 

the predictive performance of the models in scope on three 

very different datasets. We advocate further testing of these 

predictions on other datasets to expand our understanding of 

these models’ capability and to build industry specific 

insights. 
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APPENDICES 

A. Timing of transactions for Pareto/NBD and HB models 

In this section, we present the derivations of the expected 
timing of the last transaction, tx, in the observation period 
[0,T] and the expected timing of the next event (either the first 
purchase or the end of the forecast interval), tf , conditioned 
on an individual’s parameters. The hyperparameters do not 
play a role here.  

Throughout this appendix, we drop the i subscript 
representing customer i for notational simplicity. For the sake 
of simplicity, we also do not condition on the length of the 
observational interval T. 

The timing expressions are the same for both models as 
they have the same assumptions on individual behavior. The 
time of defection, t∆, has the probability function 

P(d𝑡∆|λ, µ)  =  µe−µ𝑡∆ d𝑡∆  

 

Setting tδ = min(t∆,T ), we obtain 

P(d𝑡δ|λ, µ)  = {
µe−µ𝑡δ d𝑡δ                    if 0 ≤  𝑡δ  <  T

e−µT δ𝑇(𝑡δ)d𝑡δ                      if 𝑡δ  =  T
𝑂                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where δw(x) is the Dirac-delta function at w evaluated at x. 
Conditioning on the unobserved value tδ, we find the density 
of tx on (0,T] as 

P(d𝑡x|𝑡δ, λ, µ )  =  (λ 𝑒
−λ(𝑡δ−𝑡x )   +  δ0(𝑡x ) 𝑒

−λ𝑡δ)d𝑡x 

 

where we make use of the memoryless property of the Poisson 
process. Informally, we can look back in time and do as if the 
process starts at tδ. Integrating over tδ, one obtains 

P(d𝑡x|λ, µ) = ∫ P(d𝑡x|𝑡δ, λ, µ)P(d𝑡δ|λ, µ)
𝑡δ∈[𝑡x,𝑇]

=

{
 
 

 
 λ 

µ𝑒−(λ+µ)𝑡x ) + λ𝑒−(λ+µ)T )

λ + µ
d𝑡x        if 0 <  𝑡x  ≤  T

(
µ

λ + µ
+
λ𝑒−(λ+µ)T )

λ + µ
)δ0(𝑡x )d𝑡x          if  𝑡x = 0

   

 

Based on the equation above, the expected value on the time 
of the last transaction is calculated as follows, 

E(𝑡x|λ, µ) = ∫ 𝑡xP(d𝑡x|λ, µ)
∞

0

=
1 − e−µT

µ
−
1 − e−(λ+µ)T

λ + µ
   

Next, we present the derivations for the predictions of the time 
of next event from the end of the calibration period conditional 
on x and tx : E(tf |x,tx ,λ,µ). Let T+ be some future horizon T+ > 
T. Consider the first future transaction after T. We define tf as 
the time of this occurrence or T+, whichever is first. We have 

E(𝑡f|𝑥, 𝑡x, λ, µ) =  E(𝑡f|𝑥, 𝑡x, z = 1, λ, µ)𝑝+

+ E(𝑡f|𝑥, 𝑡x, z = 0, λ, µ)(1 − 𝑝
+)  

 

where z = 1 indicates that a customer is active at time T and 

𝑝+ =  E(z|𝑥, 𝑡x, λ, µ) =
λ

λ + e(λ+µ)(T−𝑡𝑥)
 

 

Considering an active customer, the density of the first timing, 
t, of a transaction on (T,∞) is λe −(λ+µ)(t −T ) and t has a point 
mass at infinity of µ/(λ+µ) as defection may have been the 
first event to happen. Therefore, on the interval (T, T+), the 
density of tf given a customer’s transaction data and that the 
customer is active at time T is πf (t | x, tx ,z=1, λ, µ) = λe −(λ+µ)(t 

−T ). The expectation is computed as, 

E(𝑡f|𝑥, 𝑡x, λ, µ) =  𝑝
+∫ 𝑡 𝜋𝑓  (𝑡 | 𝑥, 𝑡x , 𝑧 = 1, 𝜆, µ)𝑑𝑡

𝑇+

𝑇

+ 𝑝+ (1

−∫ 𝜋𝑓 (𝑡 | 𝑥, 𝑡x , 𝑧 = 1, 𝜆, µ)𝑑𝑡
𝑇+

𝑇

)𝑇+

+ (1 − 𝑝+)𝑇+ 

E(𝑡f|𝑥, 𝑡x, λ, µ) = T +
µ𝑒(λ+µ)(T−𝑡x ) + λ𝑒−(λ+µ)T )

λ + µ𝑒(λ+µ)(T−𝑡x )
(𝑇+ − 𝑇)

+
λ

λ + µ𝑒(λ+µ)(T−𝑡x )
+
1 − 𝑒−(λ+µ)(𝑇

+−𝑇 )

λ + µ
 

 

B. Estimation procedure for Pareto/NBD Model 

To calculate the various expectations, we also need draws 
from the conditional density of the individual-level 
parameters. Below we discuss how to obtain such draws for 
the Pareto/NBD model. 

For the Pareto/NBD model, sampling from the full 
conditionals is not straightforward. Therefore, we need to 
develop a different method. We propose to use a random-walk 
Metropolis-Hastings algorithm to obtain draws from the 
individual-level posterior distribution. 

The likelihood function for the Pareto/NBD model is  

𝑓(𝑥, 𝑡𝑥|𝜆, 𝜇) =
𝜆𝑥

𝜆+𝜇
(µ𝑒−(λ+µ)𝑡x + λ𝑒−(λ+µ)T).  

Given the likelihood function and the independent gamma 
priors on the defection and purchase rates, the joint posterior 
distribution of the behavioral parameters can be written as  
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𝜋(𝜆, 𝜇|𝑟, 𝛼, 𝑠, 𝛽, 𝑥, 𝑡𝑥) ∝ 𝑓(𝑥, 𝑡𝑥|𝜆, 𝜇)𝑔(𝜆|𝑟, 𝛼)ℎ(𝛽|𝑠, 𝛽)

∝
𝜆𝑥

𝜆 + 𝜇
(µ𝑒−(λ+µ)𝑡x

+ λ𝑒−(λ+µ)T)𝜆(𝑟−1)𝑒−𝛼𝜆𝜇(𝑠−1)𝑒−𝛽𝜇 

Note that we consider the hyperparameters (r,α,s,β) to be 
fixed. The candidate draws in our random-walk Metropolis-
Hastings sampler are generated using  

𝜆𝑐 = exp(log 𝜆 + 𝜀𝜆),   𝜀𝜆  ∼ 𝑁(0, 𝜎𝜆
2) 

𝜇𝑐 = exp(log 𝜇 + 𝜀𝜇),   𝜀𝜇  ∼ 𝑁(0, 𝜎𝜇
2) 

In this way we ensure that the parameters always remain 
positive. The parameters are now drawn sequentially using the 
following two-step Gibbs sampler:  

1. Start sampling with initial values for λ and µ  

2. Update λ  

• Draw the candidate value: λc  

• Compute α = min(1,  𝜋(𝜆𝑐 , 𝜇|𝑟, 𝛼, 𝑠, 𝛽, 𝑥, 𝑡𝑥)/
𝜋(𝜆, 𝜇|𝑟, 𝛼, 𝑠, 𝛽, 𝑥, 𝑡𝑥)) 

• With probability α, set λ = λc 

3. Update 𝜇  

• Draw the candidate value: 𝜇 c  

• Compute α = min(1,  𝜋(𝜇𝑐 , 𝜆|𝑟, 𝛼, 𝑠, 𝛽, 𝑥, 𝑡𝑥)/
𝜋(𝜆, 𝜇|𝑟, 𝛼, 𝑠, 𝛽, 𝑥, 𝑡𝑥)) 

• With probability α, set 𝜇 = 𝜇 c 

Repeat steps 2 and 3. 

 

 


